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An Introduction to Manifolds

Goal

1 This project is about the extension of calculus from curves and surfaces to
higher dimensions. The higher-dimensional analogues of smooth curves and
surfaces are called manifolds.

2 We generalize the notion of directional derivative on Rn by introducing
equivalence relation on C∞ functions in the neighborhood of a point p and call
the linear map of directional derivative as derivation at p.

3 We discuss the notion of a smooth manifold and smooth maps between two
manifolds. Using coordinate charts, one can transfer the notion of smooth maps
from Euclidean spaces to manifolds.

4 A smooth map of manifolds induces a linear map, called its differential, of
tangent spaces at corresponding points. In local coordinates, the differential is
represented by the Jacobian matrix of partial derivatives of the map.

5 We introduce the concept of submanifolds, immersion, submersion maps on a
manifold and rank, critical, regular points and level set.
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Chapter 1: Manifolds

What is a Manifold?

Preliminary concepts required to define a Manifold

A topological space is second countable if it has a countable basis. A neighborhood of a point p in a topological
space M is any open set containing p. An open cover of M is a collection {Uα}α∈A of open sets in M whose
union

⋃
α∈A Uα is M. A topological space M is locally Euclidean of dimension n if every point p in M has a

neighborhood U such that there is a homeomorphism φ from U onto an open subset of Rn .

Definition

A topological manifold is a Hausdorff, second countable, locally Euclidean space. Manifold is of dimension n if it is
locally Euclidean of dim n.

U is called coordinate neighborhood .

φ is called coordinate map on U.

(U , φ : U → Rn) is called a chart.

Figure: Different types of Manifolds
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Chapter 1: Manifolds

Transition Functions

Two charts
(
U , φ : U → Rn) and

(
V , ψ : U → Rn) are C∞ compatible if these two maps are C∞ maps,

they are called transition functions.

φ ◦ ψ−1 : ψ(U ∩ V ) −→ φ(U ∩ V )

ψ ◦ φ−1 : φ(U ∩ V ) −→ ψ(U ∩ V )

φ ◦ ψ−1 and ψ ◦ φ−1 are called transition functions between the charts.

If U ∩ V is empty, they are automatically C∞ compatible.

A ’C∞-Atlas’ on a locally Euclidean space M is a collection U = {(Uα, φα)} of pairwise C∞ compatible charts
that cover M i.e, M =

⋃
α

Uα. An atlas A on a locally Euclidean space is said to be maximal atlas if it is not

contained in a larger atlas i.e, if B is another atlas containing A then B = A.

Figure: The Transition function ψ ◦ φ−1 is defined on φ(U ∩ V )
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Smooth Manifold

Smooth Manifold

A manifold is smooth manifold or C∞ manifold if the transition maps are smooth. It is a topological manifold
together with a maximal atlas (also called differentiable structure on M). To show, that a topological space M is a
C∞ manifold, it suffices to check that,

M is Hausdorff and second countable,

M has a C∞ atlas.

Let M be a smooth manifold of dimension n. A function f : M → R is said to be a C∞ or smooth map at a

point p ∈ M if there is a chart (U, φ) about p ∈ M such that , f ◦ φ−1 : φ(U)→ Rn is C∞ at φ(p). f is
said to be C∞ on M if f is C∞ at every point of M.

In the context of manifolds, we denote the standard
co-ordinates on Rn by r1, . . . , rn . If
(U, φ : U → Rn) is a chart of a manifold, we let

x i = r i ◦ φ be the i-th component of φ and write
φ = (x1, . . . , xn) and (U, φ) = (U, x1, . . . , xn).

Thus, for p ∈ U, (x1(p), . . . , xn(p)) is a point in

Rn . The functions x1, . . . , xn are called local
coordinates on U. Figure: Checking that a function f is C∞ at p by

pulling back to Rn .
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Chapter 1: Manifolds

Smoothness of function independent of Chart

The definition of smoothness of a function f at a point is independent of the chart (U, φ). For if f ◦ φ−1 is C∞

at φ(p) and (V , ψ) be any other chart about p ∈ M , then on ψ(V ∩ U), the function

f ◦ ψ−1 = (f ◦ φ−1) ◦ (φ ◦ ψ−1)

is also C∞ at φ(p).

Figure: Checking that a function f is C∞ at p via two charts.

Corollary

If M be a manifold of dimension n and f : M → R is a real valued C∞ function on M, then for every chart

(V , ψ) on M, f ◦ ψ−1 : Rn ⊃ ψ(V )→ R is C∞ on ψ(V ).
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Chapter 1: Manifolds

Smooth Map between two Manifolds

Let N and M be manifolds of dimension n and m, respectively. A continuous map F : N → M is C∞ at a point p
in N if there are charts (V , ψ) about F (p) in M and (U, φ) about p in N such that the composition

ψ ◦ F ◦ φ−1, a map from the open subset φ(F−1(V ) ∩ U) of Rn to Rm , is C∞ at φ(p). The continuous map
F : N → M is said to be C∞ if it is C∞ at every point of N.

Figure: Checking that a map F : N → M is C∞ at p.

We assume F : N → M continuous to ensure that F−1(V ) is an open set in N. Thus, C∞ maps between
manifolds are by definition continuous.
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Product Manifold

We have (finite) products in the category of manifolds. Say, M and N are m and n-dim C∞ manifolds,
respectively, then the product space M × N into an m + n-dim C∞ manifold. If we have a coordinate patch
(U, φU ) on M and another (V , φV ) on N, then we surely have U × V ⊆ M × N as an open subset of the
product space. We just define

φU×V = φU × φV : U × V → Rm × Rn = Rm+n

If U′ and V ′ are another pair of coordinate patches we can set up the transition function

φU′×V ′ ◦ φ
−1
U×V

= (φU′ × φV ′ ) ◦ (φU × φV ) = (φU′ ◦ φ
−1
U

)× (φV ′ ◦ φ
−1
V

)

Each of these factors is smooth on M and N. Since smoothness is determined component-wise, the product
mapping is smooth as well. So we have an atlas making M × N a C∞ manifold. The collection
{(Ui xVj , φUi

× φVj
)} of charts is an atlas on M × N.

Figure: the infinite cylinder S1 × R and the torus S1 × S1 are product manifolds
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Jacobian Matrix

Partial Derivative

On a manifold M of dimension n , let (U, φ) be a chart and f a C∞ function. As a function into Rn , φ has n

components x1, . . . , xn . If r1, . . . , rn are the standard coordinates on Rn , then x i = r i ◦ φ.

For, p ∈ U , we define the partial derivative
∂f

∂x i
of f with respect to x i at p to be :

∂

∂x i

∣∣∣∣∣
p

f :=
∂f

∂x i
(p) :=

∂(f ◦ φ−1)

∂r i
(φ(p)) :=

∂

∂r i

∣∣∣∣∣
φ(p)

(f ◦ φ−1)

Jacobian Matrix of a function between two manifolds

Let F : N → M be a smooth map , and let (U, φ) = (U, x1, . . . , xn) and (V , ψ) = (V , y1, . . . , ym) be charts
on N and M respectively such that F (U) ⊂ V . Denote by :

F i := y i ◦ F = r i ◦ ψ ◦ F : U → R

is the i th component of F in the chart (V , ψ). Then the matrix

[
∂F i

∂x j

]
is called the Jacobian matrix of F relative

to the charts (U, φ) and (V , ψ). The transition map φ ◦ φ−1 : φ(U ∩ V )→ ψ(U ∩ V ) is a diffeomorphism of

open subsets of Rn. It’s Jacobian matrix J(ψ ◦ φ−1) at φ(p) is the matrix

[
∂y i

∂x j

]
of partial derivatives at p.
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Chapter 2: Tangent Space of Manifold

Concept of Tangent Vector to a Surface

Our Ordinary Concept of Tangent in an Example :

Let the points of R3 be denoted by (x, y, z) and consider

the sphere M whose equation is x2 + y2 + (z − 1)2 = 1.
The point p = (0, 0, 0) lies on M, and for any real
number a and b both not 0, the line
{(au, bu, 0) : −∞ < u <∞} is a tangent to M at p.
Say, a = 1, b = 2, then the line y = 2x is tangent line
restricted to x − y plane and (1, 2, 0) is tangent vector
of M at p.

Figure: Intersection of planes y = 2x and
z = 0 is one such tangent vector {(u, 2u, 0)}
at (0, 0, 0)

A basic principle in manifold theory is the linearization principle, according to which a manifold can be
approximated near a point by its tangent space at the point. However, this elementary analytic-geometric notion
does not extend very well to arbitrary differentiable manifolds. Instead, tangent vectors will be defined either as
directional derivatives or point-derivation or a velocity vector at the point.
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Tangent Vector as Directional Derivative

In calculus we visualize the tangent space at p in Rn denoted by Tp(Rn) as the vector space of all arrows

emanating from p. The line through a point p = (p1, . . . , pn) with direction v = < v1, . . . , vn > in Rn has
parametrization :

c(t) = (p1 + tv1
, . . . , pn + tvn).

If f is C∞ in a neighborhood of p in Rn and v is a tangent vector at p,
the directional derivative of f in the direction v at p is defined to be

Dv f = lim
t→0

f (c(t))− f (p)

t
=

d

dt

∣∣∣∣∣
t=0

f (c(t))

By the chain rule,

Dv f =
n∑

i=1

dc i

dt
(0)

∂f

∂x i
(p) =

n∑
i=1

v i
∂f

∂x i
(p)

Figure: Example :
Directional Derivative

The association v 7→ Dv of the directional derivative Dv to a tangent vector v offers a way to characterize tangent
vectors as certain operators on functions.
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Chapter 2: Tangent Space of Manifold

Defining Tangent Space via Tangent Curve

Let M is a Ck manifold and x ∈ M. Pick a coordinate chart
φ : U → Rn , where x ∈ U ⊆ M is open. Let, γ1, γ2 : (−1, 1)→ M
with γ1(0) = x = γ2(0) be two curves initialized at x , such that
φ ◦ γ1, φ ◦ γ2 : (−1, 1)→ Rn are differentiable. Then γ1 and γ2 are
said to be equivalent at 0 if and only if the derivatives of φ ◦ γ1 and
φ ◦ γ2 at 0 coincide. This defines an equivalence relation on the set of all
differentiable curves initialized at x , and equivalence classes of such curves
are known as tangent vectors of M at x . The equivalence class of any such
curve γ is denoted by γ′(0).

The tangent space of M at x , denoted by TxM, is then defined as the set
of all tangent vectors at x ;independent of the choice of coordinate chart
φ : U → Rn .

Figure: The tangent space
TxM and a tangent vector
v ∈ TxM, along a curve
traveling through x ∈ M.

To define vector-space operations on TxM, we use a chart φ : U → Rn and define a map dφx : TxM → Rn by:

dφx (γ′(0))
df
=

d

dt
[(φ ◦ γ)(t)]

∣∣∣∣∣
t=0

, where γ ∈ γ′(0).

This construction does not depend on the particular chart φ : U → Rn and the curve γ being used. The map dφx
turns out to be bijective and may be used to transfer the vector-space operations on Rn over to TxM, thus turning
the latter set into an n-dimensional real vector space.
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Defining Tangent Space via Point-Derivation

Germ

Consider the set of all pairs (f ,U), where U is a neighborhood of p and f : U → R is a C∞ function.
(f ,U) ≡ (g, V ) if there is an open set W ⊂ U ∩ V containing p such that f = g when restricted to W . The
equivalence class of (f ,U) is called the Germ of f at p. The set of all germs of C∞ functions on Rn at p is
C∞p (Rn).

Point Derivation

For each tangent vector v at a point p in Rn , the directional derivative at p gives a map of real vector spaces
Dv : C∞p → R. Dv is R-linear and satisfies the Leibniz rule : Dv (fg) = (Dv f )g(p) + f (p)Dv g .

Any linear map D : C∞p → R satisfying the Leibniz rule is called a derivation at p or a point-derivation of C∞p .

Since, directional derivatives at p are all derivations at p, so there is a map,

v 7→ Dv =
∑

v i
∂

∂x i

∣∣∣∣∣
p

Tangent Space as point-derivation

A tangent vector at a point p in a manifold M is a derivation at p. The tangent vectors at p form a vector space
Tp(M), called the tangent space of M at p. If U is an open set containing p in M, then the algebra C∞p (U) of

germs of C∞ functions in U at p is the same as C∞p (M). Hence, TpU = TpM.
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Chapter 2: Tangent Space of Manifold

Differential of a Map

Suppose F : Rn → Rm is smooth and p is a point in Rn . Let x1, . . . , xn be the coordinates on Rn and

y1, . . . , ym be the coordinates on Rm . Then the tangent vectors ∂
∂x1

∣∣∣∣
p
, . . . , ∂

∂xn

∣∣∣∣
p

form a basis for the

tangent space Tp(Rn) and ∂
∂y1

∣∣∣∣
F (p)

, . . . , ∂
∂ym

∣∣∣∣
F (p)

form a basis for the tangent space TF (p)(Rm) .

The linear map F∗ : Tp(Rn)→ TF (p)(Rm) is described by the matrix [aij ] relative to these two bases :

F∗

(
∂

∂x j

∣∣∣∣∣
p

)
=
∑
k

akj
∂

∂yk

∣∣∣∣∣
F (p)

, akj ∈ R

Let F : N → M be a C∞ map between two manifolds. At each point p ∈ N, the map F induces a linear map of
tangent spaces called its differential at p, F∗ : TpN → TF (p)M. If Xp ∈ TpN, then F∗(Xp) is the tangent vector

in TF (p)M defined as :

(F∗(Xp))(f ) = Xp(f ◦ F ) ∈ R for f ∈ C∞F (p)(M)

f is a germ at F (p) , represented by a C∞ function in a neighborhood of F (p).

The Chain Rule : If F : N → M and G : M → P are smooth map of manifolds and p ∈ N, then,

(G ◦ F )∗,p = G∗,F (p) ◦ F∗,p .
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Chapter 2: Tangent Space of Manifold

Existence of a Curve with given initial vector
A smooth curve in a manifold M is by definition a smooth map c : (a, b)→ M from some open interval (a, b)
into M. Usually we assume 0 ∈ (a, b) and say that c is a curve starting at p if c(0) = p. The velocity vector
c′(t0) of the curve c, which is the velocity of c at the point c(t0) at time t0 ∈ (a, b) is defined to be

c′(t0) := c∗

(
d

dt

∣∣∣∣∣
t0

)
∈ Tc(t0) M.

Velocity of a Curve in Local Coordinates : Let c : (a, b)→ M be a smooth curve, and let (U, x1, . . . , xn) be a

coordinate chart about c(t). Set c i = x i ◦ c for the i th component of a c in the chart. Then c′(t) is given by

c′(t) =
n∑

i=1

c i (t)
∂

∂x i

∣∣∣∣∣
c(t)

.

Every smooth curve c at p in a manifold M gives rise to a tangent vector c′(0) in TpM. Conversely, one can show
that every tangent vector Xp ∈ TpM is the velocity vector of some curve at p.

Existence of a Curve with given initial vector : For any point p in a manifold M and any tangent vector
Xp ∈ TpM , there are ε > 0 and a smooth curve c : (−ε, ε)→ M such that c(0) = p and c′(0) = Xp .

Figure: Existence of a curve through a point with a given initial vector.
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Chapter 3: Submanifold

How to define a Sub-Manifold?

Submanifold

A subset S of a manifold N of dimension n is a regular submanifold of dimension k if for every p ∈ S , there is a
coordinate neighborhood (U, φ) = (U, x1, . . . , xn) of p in the maximal atlas of N such that U ∩ S is defined by
the vanishing of n− k of the coordinate functions. Such a chart (U, φ) in N, is called an adapted chart relative to

S . On U ∩ S , φ = (x1, . . . , xk , 0, . . . , 0).

Let , φS : U ∩ S → Rk be the restriction of the first k components of φ to U ∩ S i.e φS := (x1, . . . , xk ). Hence,
(U ∩ S, φS ) is a chart for S in the subspace topology. Then, (n − k) is said to be the co-dimension of S in N.

Example : The interval S :=]− 1, 1[ on the x-axis is a regular submanifold of the xy -plane. As an adapted chart,
we can take the open square U =]− 1, 1[×]− 1, 1[ with coordinates x, y . Then U ∩ S is precisely the zero set of
y on U. But, V =]− 2, 0[×]− 1, 1[, then (V , x, y) is not an adapted chart relative to S , since V ∩ S is the open
interval ]− 1, 0[ on the x-axis, while the zero set of y on V is the open interval ]− 2, 0[ on the x-axis.
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Few Important Concepts

Immersion, Submersion

A C∞ map F : N → M is said to be an immersion at p ∈ N if its differential F∗,p : TpN → TF (p)M is

injective. F is submersion at p ∈ N if F∗,p is surjective. F is said to be an immersion if it is immersion at every
p ∈ N. Suppose dim N = n, dim M = m. Then, dim TpN = n and dim TF (p)M = m. Injectivity of the map

F∗,p (immersion) implies n ≤ m. Similarly, surjectivity of F∗,p (submersion) implies n ≥ m.

Example. The prototype of an immersion is the inclusion of Rn in a higher dimensional Rm :
i(x1, . . . , xn) = (x1, . . . , xn, 0, . . . , 0).
The prototype of an submersion is the projection of Rn onto a lower dimensional Rm :
π(x1, . . . , xm, xm+1, . . . , xn) = (x1, . . . , xm).

Rank

Consider a smooth map F : N → M of manifolds. It’s rank at a point p in N, denoted by rk F (p) is defined as the
rank of the differential, F∗,p : TpN → TF (p)M. Since F∗,p is represented by the Jacobian matrix,

rkF (p) = rk

[
∂F i

∂x j
(p)

]

Since differential of a map is independent of coordinate charts, so is rank of a Jacobian matrix.
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Few Important Concepts

Critical Point, Regular Point

A point p in N is a critical point of F if the differential F∗,p : TpN → TF (p)M fails to be surjective. A point in

M is critical value if it is image of a critical point. It is a regular point of F if the differential F∗,p is surjective. In
other words, p is a regular point of the map F if and only if F is a submersion at p. A point in M is a regular
value if it is not a critical value.

Level Set

A level set of a map F : N → M is a subset F−1({c}) = {p ∈ N|F (p) = c} for some c ∈ M. The value

c ∈ M is called level of the level set F−1({c}). F−1(0) is called zero set of F.

The inverse image F−1(c) of a regular value c is called a regular level set. If the zero set F−1(0) is a regular level
set of F : N → Rm , it’s called a regular zero set.

Example. (The 2-sphere in R3) The unit 2-sphere S2 = {(x, y, z) ∈ R3|x2 + y2 + z2 = 1} is the level set

g−1(1) of level 1 of the function g(x, y, z) = x2 + y2 + z2 . We will use the inverse function theorem to find

adapted charts of R3 that cover S2 . As the proof will show, the process is easier for a zero set, mainly because a
regular submanifold is defined locally as the zero set of coordinate functions. To express S2 as a zero set, we

rewrite its defining equation as f (x, y, z) = x2 + y2 + z2 − 1 = 0. Then S2 = f−1(0).
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Further Scope of Study

Since a manifold in general does not have standard coordinates, only
coordinate-independent concepts makes sense on a manifold. For example, on a
manifold of dimension n, it is not possible to integrate functions. The objects
that can be integrated are differential forms which are generalizations of
real-valued functions on a manifold. Instead of assigning to each point of the
manifold a number, a differential k-form assigns to each point a k-covector on
its tangent space. For k = 0 and 1, differential k-forms are functions and
covector fields respectively.

Many of the problems in mathematics share common features. This has given
rise to the theory of categories and functors, which tries to clarify the structural
similarities among different areas of mathematics. A category is essentially a
collection of objects and arrows between objects. Smooth manifolds and smooth
maps form a category, and so do vector spaces and linear maps.

A Lie group is a manifold that is also a group such that the group operations
are smooth. Lie’s original motivation was to study the group of transformations
of a space as a continuous analogue of the group of permutations of a finite set.
Indeed, a diffeomorphism of a manifold M can be viewed as a permutation of
the points of M.
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