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Why Study Partial Fields?

Partial Fields were introduced by Semple and Whittle (1996) to study
generalizations of totally unimmodular matrices and regular matroids
in a systematic way. It is shown that if A is a matrix over a partial field
that has the property that all of its square submatrices have defined
determinants, then a well-defined matroid can be associated with A.
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Definitions |

Partial Functions

A partial function on a set S is a function whose domain is a subset
of S.

Partial Binary Operations

A partial binary operation on S is a function + : A — S whose
domain is a subset A of S x S. If (a,b) € A, then a+ b is defined,
otherwise it is not defined.

Association

Let S be a set with a commutative partial binary operation +. Say

S''is a finite multiset of elements of S. An association of the multiset
S’ is a way of unambiguously defining sums to obtain an expression

that is a version of the sum of the elements of S’. To say that a; +
3+ ...+ a, is defined it means some association of {a1, ap,...,a,}
has all the sums defined.
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Ring Definition of a Partial Field

A partial field is a pair (R, G), where R is a commutative ring,
and G is a subgroup of R* such that —1 € G.

If P=(R,G,+,-,0,1) is a partial field, and p € R, then we say that
pisanelementof Pif p=0o0r p € G. We define P* := G = P—{0}.
Multiplication "-" is a binary function but addition "+4" is a partial
binary function. Clearly, if p,g € P then also p-q € P, but p+ g
need not be an element of P. A partial field is trivial if 1 = 0.
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More Concepts |

Let A be an n x n square matrix with entries in a partial field
P. Just as with fields, we define the determinant to be a
signed sum of products determined by permutations. Let p be
an element of S, the group of permutations of {1,2,...,n}.
Then ¢(p) denotes the sign of p. Formally, the determinant of
A is defined by

det(A) = > e(p)atp(1)22p(2) * * * Anp(n):
PESH

if this sum is defined.
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More Concepts I

An m x n matrix A over a partial field P is a P-matrix or weak
P-matrix if det(A’) is defined for every square submatrix A’
of A. Say A is a P-matrix; then a non-empty set of columns

{ci, Ciy, ..., Ci,} of Alis independent if k < m, and at least
one of the k x k submatrices of A with columns indexed by
{1, i2,...,ix} has a non-zero determinant. Also, an empty set

of columns is independent. The independent sets of vectors of
a P-matrix are the independent sets of a matroid. We consider
matrices whose columns are labelled by the elements of a set
E. A subset of E is independent if the set of columns it labels
is independent.
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More Concepts Il

Nondegenerate Matrix

An r x E weak P-matrix A is nondegenerate if there exists an
X C E with |X| = r and det(A[r, X]) # 0. Note that A is
always degenerate if IP is trivial.

Basis

Define:

B:={X C E||X| = r,det(A[r, X]) # 0}.

Then B is the set of bases of a matroid in the partial field PP.
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More Concepts

Pivot

Let x5 be a non-zero entry of a matrix A. Recall that a pivot on xg
is obtained by multiplying row s by 1/xs and, for i in {1,2,...,s —

Xst Xsj
XieXij |

1,s+1,...,m}, replacing x; by Xopt

P-Representable Matrix

If Aiis a P-matrix for some partial field P, whose columns are labelled
by a set S. Then the independent subsets of S are the independent
sets in a matroid on S. This matroid is denoted by M[A]. A matroid
M is representable over P or is P-representable if it is equal to M[A]
for some P-matrix A, and A is called a representation of M.

Standard Form of Matroid Representation

A matroid representation of the form [/|A] where | is the identity
matrix is said to be in standard form.
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Properties |

PROPOSITION 3.3, Let A be a P-matrix. If th trix B is obtained
from A%y one of tﬁe follo?/ving o%gratiéng, rtl)ﬁen B isearnPa—nr1|§trix:Is eptaine

(i) interchanging a pair of rows or columns;

(ii) replacing a row or column by a non-zero scalar multiple of that
row or column;

(iii) performing a pivot on a non-zero entry of A.

LEMMA 3.4. Let A be an n x (n+ 1) P-matrix, where n > 2, and assume
that each row of A has a non-zero entry. Let B be an n x n submatrix of A.
If all other n x n submatrices of A have zero determinant, then det B # 0.

PROPOSITION 3.5. The independent sets of a P-matrix are preserved
under the operations of interchanging a pair of rows or columns, multiplying
a column or a row by a non-zero scalar, and performing a pivot on a non-zero
entry of the matrix.
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Properties |l

PROPOSITION 4.1. If the matroid M is representable over P then M
can be represented by a P-matrix of the form [/|A], where | is an identity
matrix. A representation of the form [/|A] is said to be the Standard Form.

PROPOSITION 4.2. Let M and N be matroids representable over P.
(i) M* is representable over P.
(i) All minors of M are representable over P.

(iii) The direct sum of M and N is representable over P.

PROPOSITION 4.3. The matroid M is a (G, F)-matroid if and only if it
is representable over (G, F).
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Examples of Partial Fields

@ The partial field GF(3) = ({—1,1}, GF(3)) and Reg = ({—1,1},Q)
aka regular matroids. In Reg, the sums 1 +1 and —1 — 1 are not
defined.

@ The partial field NR = ({£a/(a — 1) : i,j € Z},Q(«)), which leads
to the class of near-regular matroids.

© The partial field (Gs, C), where Gg is the group of complex sixth roots
of unity, which leads to the class of /1-matroids.

@ The partial field P, defined using the multiplicative group Gg = {a:
a® = 1}. In Py, addition is only defined when x 4+ y = 0, making
addition trivial. So we have, —1 = a3, —a = a* and —a? = 2°.

@ The partial field Pg, obtained by embedding Gg as a subgroup of the
complex numbers. This extends the partial addition in Pr, allowing
operations such as a> + 1 = a and a* + 1 = a° as well.

@ A partial field obtained by embedding Gg into the multiplicative group
of GF(7), which results in the field GF(7) itself.

@ The partial field D = ({£2" : i € Z},Q), which leads to the class of
dyadic matroids.
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How special are these classes of matroids?

e If Fis a field other than GF(2) whose characteristic is not 3, then
the class of matroids representable over GF(3) and F, is the class
of near-regular matroids, the class of dyadic matroids, the class of
/1-matroids, or the class of matroids obtained by taking direct
sums and 2-sums of dyadic matroids and /1-matroids.

@ The class of matroids representable over a given partial field is
minor-closed and is closed under the taking of duals, direct sums,
and 2-sums.
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Theorem (Tutte,1965).

A matrix over the real numbers is totally unimodular if the determi-
nant of every square submatrix is in the set {—1,0,1}. A matroid is
regular if it can be represented by a totally unimodular matrix. Tutte
proved the following characterization of regular matroids:

Theorem (Tutte, 1965). Let M be a matroid. The following are
equivalent:

(i) M is representable over both GF(2) and GF(3);

(i) M is representable over GF(2) and some field F that does not
have characteristic 2;

(iii) M is representable over R by a totally unimodular matrix;

(iv) M is representable over every field.
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Theorem (Whittle, 1997).

Whittle (1995, 1997) proved very interesting results of a similar na-
ture. Here is one representative example. We say that a matrix over
the real numbers is totally dyadic if the determinant of every square
submatrix is in the set {0} U {+2% | k € Z}.

Theorem (Whittle, 1997). Let M be a matroid. The following are
equivalent:

(i) M is representable over both GF(3) and GF(5);
(i) M is representable over R by a totally dyadic matrix;

(iii) M is representable over every field that does not have
characteristic 2.
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Theorem 3.6

Let A be a P-matrix whose columns are labelled by a set S. Then
the independent subsets of S are the independent sets of a matroid
on S.

Proof. Evidently the empty set is independent. Say / is a nonempty in-
dependent subset of S with |/| = k. By pivoting, taking scalar multiples,
interchanging rows and columns, and applying Proposition 3.5, we may as-
sume without loss of generality that the first k rows of the submatrix of
columns labelled by / form an identity matrix. All other rows of this sub-
matrix consist of zeros. It follows immediately that all subsets of / are
independent.

Now say J is an independent subset of S with |J]| > |/|. It is easily seen
that at least one of the columns labelled by x € J has a non-zero entry in a
row other than the first k rows. Certainly x ¢ /. It now follows readily that
I'U {x} is independent and the theorem is proved.

Sayantani Bhattacharya An Introduction to Partial Fields 03.20.25 16 / 20



Further into Partial Fields...

We can further learn about partial field homomorphisms, equivalent
representations of two matroids over a partial field, partial fields sup-
porting a finite group and the dowling group geometries associated
with such groups, biased graph and its associated matroids, connec-
tivity fucntion, embedding of partial fields, minimum partial fields
supporting a group, excluded minor characterizations.
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Open Problems

@ Let / be an ideal of the multivariate polynomial ring Z[x, . .., xk] such
that xq,...,xx are units of R := Z[xy,...,xk]/l, and let G be the
subgroup of R* generated by xy,...,xk. Is there an algorithm to de-

termine, for pe G, if 1 — p € G7

@ Suppose P’ is an induced sub-partial field of P with F(P')—{0,1} # 0.
Are there rings R,R’ C R, and groups G C R*, G’ C G such that
PP~ (R,G), P2 (R,G),and G'=GNR'?

© To what extent is a partial field P determined by the set of finite fields
GF(q) for which there exists a homomorphism ¢ : P — GF(q)?
Remarks: P is certainly not uniquely determined: both K, and U,
have homomorphisms to all finite fields with at least 4 elements, but
some Ko-representable matroids are not U,-representable. Let Py :=
{0} U{x € N | x is prime}.

© Let P be a partial field. The characteristic set of P is :

X(P) := {p € Py | 3 a homomorphism P — F of characteristic p}.

For which subsets S of Py does there exist a partial field P with x(P) =

57
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